-t^2+245=0

Simple and best practice solution for -t^2+245=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -t^2+245=0 equation:



-t^2+245=0
We add all the numbers together, and all the variables
-1t^2+245=0
a = -1; b = 0; c = +245;
Δ = b2-4ac
Δ = 02-4·(-1)·245
Δ = 980
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{980}=\sqrt{196*5}=\sqrt{196}*\sqrt{5}=14\sqrt{5}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-14\sqrt{5}}{2*-1}=\frac{0-14\sqrt{5}}{-2} =-\frac{14\sqrt{5}}{-2} =-\frac{7\sqrt{5}}{-1} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+14\sqrt{5}}{2*-1}=\frac{0+14\sqrt{5}}{-2} =\frac{14\sqrt{5}}{-2} =\frac{7\sqrt{5}}{-1} $

See similar equations:

| 3x+0.5=21.5 | | m+10/3=m | | 2(−7a+6)=−16−7a | | 5(u-3)-8u=3 | | 5x+456=7x-89 | | -2|d|=14 | | 2x-33=1x+19 | | -2(x-6)=2(x+8) | | 12/x-4+(4)=8/x-4 | | 25x+210=17 | | -2=m+10/3 | | 25) 2y-3=y+5 | | 120x-60=15(8x-4) | | 5x-17=19+19=9 | | 6(5-8v)+12=45 | | X-100+x=12 | | 2(x+4)=8x+6-6x+2 | | -14c=-10c-4 | | 65+(15+9)w=180 | | 11w+2+5w=58 | | 17) 2(3y+4)=4(2y-2) | | 2=j/4-2 | | 4x-30+2x=18 | | 140=300-4x | | 0.3(3z+6)+31.4=0.7(3z-4) | | 13z-12z=8 | | -2.3x×3/7=1/2 | | -2(3x-3)=12 | | 3h=(2/7-3/7h)-10 | | 12/x-4+4=8/x-4 | | 3.6x+54.6=7.0-8.3x | | -6-4s=-2s |

Equations solver categories